THE METABOLIC EFFECTS OF INTESTINAL RESECTION IN MAN

C. C. Booth, M.D., M.R.C.P.
Physician and Lecturer in Medicine, Postgraduate Medical School of London, London, W.12

Until recently, relatively little was known of the normal functions of different segments of the small bowel, and the metabolic effects of intestinal resection were therefore imperfectly understood. It is now recognized, however, that the small intestine, like the renal tubule, has specific functions in different parts of its length and it is possible, knowing the sites at which different substances are normally absorbed, to predict what pattern of malabsorption will follow a given resection. The deficiency states which are likely to occur may then also be predicted and appropriate treatment given.

For these reasons this paper first outlines some aspects of the physiology of the small intestine, emphasizing particularly the sites at which different food substances are absorbed. The effects of either proximal or distal resection on the anatomy and function of the remaining small intestine will then be described. An account is given of the deficiency states which may follow resection of different segments of the small intestine and treatment is also discussed.

Physiological Considerations

(1) Rate of Intestinal Transit

In mammals the rates of transit of the intestinal contents through the proximal and distal small intestine are different. The jejunum is an active organ showing vigorous peristalsis and substances therefore pass through it rapidly. The ileum, on the other hand, is sluggish and transit through the distal small intestine is slow. In the rat, for instance, substances pass through the proximal half of the small intestine in as short a time as 15 minutes, but may then take a further 90 minutes or more to pass on into the colon (Reynell and Spray, 1956; Booth, 1958). Studies of intestinal radiology and motility have shown that there is a similar although less marked difference in the transit of substances through jejunum and ileum in man.

(2) Sites of Absorption in the Small Intestine

Two factors decide the sites at which absorption of different substances occurs in the small intestine. The first is the relationship between rate of absorption and upper intestinal motility. The second factor is the location of specific transport mechanisms in specific segments of the intestine.

The vigorous motility of the upper intestine plays a large part in determining where different substances are absorbed. If a substance is taken up rapidly by the intestinal mucosa, absorption is bound to occur from the proximal intestine after oral administration. On the other hand, if absorption occurs more slowly than transit through the jejunum, the substance will be propelled into the ileum by the active upper intestine before absorption is complete (Parkins, Dimitriadou and Booth, 1960). Studies in both experimental animals and in man have shown that glucose, iron and some water-soluble vitamins (such as folic acid, riboflavin, pyridoxine and ascorbic acid) fall into the first category. Although these substances can be absorbed from the distal as well as the proximal small intestine, absorption normally occurs relatively rapidly; this therefore happens in the duodenum or jejunum and absorption is usually complete before the ileum is reached (Fig. 1) (Verzar and McDougall, 1936; Hahn, Bale, Ross, Balfour and Whipple, 1934; Cox, Meynell, Cooke and Gaddie, 1958; Booth and Mollin, 1960a; Spencer and Zamchenk, 1961; Booth and Brain, 1961; Stewart and Booth, 1961). Fat and protein, however, require digestion before absorption can occur, and these substances are absorbed more slowly. Although they are absorbed to a large extent in the jejunum (Frazer, 1943; Borgström, Dahlqvist, Lundh and Sjövall, 1957; Turner, 1958), their slower absorption allows the motility of the proximal intestine to propel them more distally before absorption is complete and some absorption therefore also occurs from the ileum (Fig. 1) (Parkins and others, 1960; Booth, Read and Jones, 1961; Booth, Alldis and Read, 1961).

The second factor of importance in determining the site of absorption is the distribution of transport mechanisms in different parts of the small intestine. Vitamin B₁₂ is unique in requiring an intrinsic factor secreted by the stomach to pro-
mote its absorption (Berk, Castle, Welch, Heinle, Anker and Epstein, 1948), and it is also unique among the vitamins in that the transport mechanisms which ensure its absorption are localized to the ileum. Under physiological conditions vitamin B₁₂ is therefore specifically absorbed in the ileum in man (Fig. 1) (Booth and Mollin, 1959). The only other substances for which a specific site of absorption has hitherto been demonstrated are the bile salts. In vitro studies of rat and guinea pig intestine suggest that the transport of glycocholate and taurocholate may be localized to the distal ileum (Lack and Weiner, 1961). It is therefore possible that bile salts may prove to be reabsorbed in a comparable area in man.

(3) The Concept of Intestinal Reserve

Like other vital organs such as the liver and kidney, the small intestine has a remarkable functional reserve. The rat, for instance, is capable of absorbing more than 100 times its dietary requirement of pyridoxine (Booth and Brain, 1961) and there appears to be virtually no limit to the absorption of this water-soluble vitamin in man (Brain and Booth, 1961). This capacity of the small intestine to absorb increasing and unlimited amounts of such water-soluble vitamins is a function of the jejunum, for even when very large doses of either pyridoxine or ascorbic acid are fed, the ileum plays little part in absorption (Booth and Brain, 1961; Brain and Booth, 1961; Stewart and Booth, 1961).

The absorption of large amounts of fat, on the other hand, cannot be achieved entirely by the jejunum. When increasing amounts of fat are given to normal individuals, there is a progressive increase in absorption and even when diets containing as much as 350 g. of fat are fed, more than 340 g. are absorbed (Wollaeger, Comfort and Osterberg, 1947; Annegers, Boutwell and Ivy, 1948). Although the jejunum plays an important part in absorbing such remarkable amounts of dietary fat, studies in both experimental animals and in man indicate that the ileum absorbs progressively more fat as the dietary fat is increased (Booth, Read and Jones, 1961; Booth, Alldis and Read, 1961). The jejunum is undoubtedly of major importance and as with pyridoxine and ascorbic acid, responds to an increased dietary load with an increased absorption, but as the dietary fat is increased more and more escapes the jejunum and passes on into the ileum to be absorbed there. The ileum is therefore an important part of the functional reserve of the small intestine for the absorption of fat.

Vitamin B₁₂ behaves quite differently. In contrast to the substances already discussed, there is a striking limit to the amount of this essential nutrient which can be absorbed at any one time through the physiological intrinsic factor mechanism. Even when test doses of as much as 50 μg of vitamin B₁₂ are given, absorption is limited to between 1 and 2 μg. (Glass, Boyd and Stephanson, 1954), and this limitation of absorption is not due to inadequate intrinsic factor secretion. Under physiological conditions the amount of B₁₂ which can be absorbed by the intestinal transport mechanisms in the ileum is therefore only just enough to satisfy the daily requirements and there is virtually no functional reserve. It is possible, however, to overcome this limit to absorption by giving very large and unphysiological doses of crystalline B₁₂ (Ross, Mollin, Cox and Unglely, 1954). Under these circumstances absorption probably occurs by diffusion and is not mediated by the physiological intrinsic factor mechanism. Such absorption occurs indiscriminately from the nasal mucosa (Monte, Reubuck and Brennan, 1953), from the rectum (Ross and others, 1954), or in the dog from the duodenum although not from the stomach (Rosenthal and Hampton, 1955). Absorption of such large and unphysiological amounts of crystalline B₁₂ can occur from the jejunum in man and does not require the specialized transport mechanism in the ileum.

Radiological Studies after Resection

(1) Intestinal Transit Time

Since there is a difference between the motility of the proximal and distal small intestine, the
rates of transit after resection of proximal or distal bowel are different. There are limitations to barium follow-through studies in assessing intestinal transit time, and although they have proved valuable for this purpose after resection in experimental animals (Booth, Evans, Menzies and Street, 1959), the results given in Table 1 suggest that such studies, although useful, should be interpreted with caution in man. This Table records the times after feeding barium at which the radio-opaque material reached the colon in a group of patients who had undergone resection of either proximal or distal small intestine.

As might be expected, the transit of barium through the residual small intestine was more rapid in the patients with the distal resections (Cases 1 to 9, Table 1), and the rate of transit was usually most rapid in those with the most extensive resections. After resection of only 6 or 8 ft. of the terminal ileum, for instance, barium took 2 hr. to reach the colon in one patient (Case 1, Table 1), and when the resections were more extensive, leaving only 4 or 6 ft. of the proximal jejunum, the intestinal transit time was invariably more rapid, being 20 or 30 min. (Cases 4 to 7, Table 1). In one patient in whom only 8 in. of the proximal jejunum remained, barium had appeared in the colon as early as 5 min. after feeding (Case 9, Table 1). However, the relationship between intestinal transit and extent of resection was not invariably so direct, for there was another patient with a resection of only 6 ft. of the terminal ileum whose intestinal transit time was as fast as 15 min. (Case 2, Table 1).

After resection of 8 ft. of the proximal jejunum, on the other hand, barium took 4 hr. to reach the colon, a normal transit time (Case 10, Table 1); and in a child with only 15 in. of the terminal ileum remaining, the transit time through the sluggish ileal segment was as long as 1 hr. (Case 11, Table 1).

(2) Radiological Appearances

It is usually claimed that there is 'compensatory hypertrophy' of the intestinal remnant after resection (Flint, 1912; Jackson, 1958). However, such hypertrophy has not always occurred and a number of cases have been recorded in which there was no enlargement of the remaining intestine (Shonyo and Jackson, 1950; Shelton and Blaine, 1954). In experimental animals it has been shown that hypertrophy may follow proximal resection (Booth and others, 1959) but does not follow distal resection (Jenseniussen, 1945; Booth and others, 1959), and is therefore unlikely to be 'compensatory' to loss of intestinal length. Fig. 2 illustrates that even as long as five years after resection of all but the proximal 4 ft. of the small intestine (Case 7) there may be no radiological enlargement of the intestine that remains.

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Age</th>
<th>Nature of Intestinal Lesion*</th>
<th>Intestinal Transit Time†</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>Right hemicolecotomy and resection of terminal 6 ft. of ileum (pathological specimens measured)</td>
<td>2 hours</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>Resection of terminal 6 ft. of ileum and cecectomy (pathological specimens measured)</td>
<td>15 minutes</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>Right hemicolecotomy and resection of 10 ft. of ileum (pathological specimens measured)</td>
<td>2 hours</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>Right hemicolecotomy and resection of all but proximal 6 ft. of jejunum (surgical estimate)</td>
<td>30 minutes</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>Right hemicolecotomy and resection of all but proximal 6 ft. of jejunum (surgical estimate)</td>
<td>20 minutes</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>Right hemicolecotomy and resection of all but proximal 4 ft. of jejunum. Side-to-side jejuno-colic anastomosis (surgical and radiological estimate)</td>
<td>30 minutes</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>Right hemicolecotomy and resection of all but proximal 3 to 4 ft. of jejunum (surgical and radiological estimate)</td>
<td>30 minutes</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Resection of approximately two-thirds of distal small intestine—30 in. of proximal jejunum remaining (measured at laparotomy)</td>
<td>30 minutes</td>
</tr>
<tr>
<td>9</td>
<td>80</td>
<td>Resection of ascending colon and all but proximal 8 in. of jejunum (measured at autopsy)</td>
<td>5 minutes</td>
</tr>
<tr>
<td>10</td>
<td>71</td>
<td>Resection of proximal 8 ft. of jejunum (pathological specimen measured)</td>
<td>4 hours</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>Resection of all small intestine but for distal 15 in. of ileum. Gastro-ileo anastomosis (surgical and radiological estimate)</td>
<td>1 1/2 hours</td>
</tr>
</tbody>
</table>

* Method of estimating extent of intestinal resection is indicated in brackets.
† Intestinal transit time is the time after feeding at which barium reached the colon. Normal limits vary considerably, but are usually between 2 and 6 hours.
Laws and Pitman (1960) have pointed out that in all but the most massive resections radiological evidence of dilatation of the remaining small intestine is more likely to be due to obstruction than compensatory hypertrophy. However, the presence of fluid levels in both small and large bowel on films taken in the erect position does not necessarily indicate obstruction. After extensive distal resections, the intestinal contents are bulky, contain variable amounts of fat and are fluid, giving the characteristic appearance of fluid levels in erect films (Case 7, Fig. 3). These are merely a reflection of the fluid nature of the intestinal contents. Misinterpretation of the significance of fluid levels on plain abdominal X-ray films may lead to an unnecessary laparotomy.

An end-to-end anastomosis between small and large intestine usually proves entirely satisfactory, but stricture at the site of anastomosis is particularly liable to follow resection for Crohn's disease and sometimes occurs after resection for ileal tuberculosis. Although side-to-side anastomoses may sometimes be unavoidable at difficult emergency operations when extensive
resections are carried out, they almost invariably result in the development of a large antiperistaltic intestinal loop caused by dilatation of the blind end of small intestine immediately distal to the anastomosis (Case 6, Fig. 4). The dangers and disadvantages of such loops are well known.

Intestinal Function Tests after Resection

(1) Distal Resections

Since vitamin B₁₂ is absorbed in the ileum in man, resection of the ileum results in malabsorption of vitamin B₁₂. The precise amount of ileum which must be resected in order to cause B₁₂ malabsorption probably varies in different individuals. In general, however, B₁₂ absorption is invariably subnormal if 6 ft. or more have been removed (Booth and Mollin, 1959). The extent to which there is malabsorption of other substances depends on the extent of the intestinal resection. Details of the patients with distal resections described below have been given by Booth and Mollin (1960 a and b), who have classified these patients in three groups.

Group 1. In the first group are patients who have undergone resection of 6 or 8 ft. of the ileum. Such patients may fail to absorb B₁₂ but show no interference with the absorption of other substances. An example of this type of malabsorption is illustrated in Fig. 5 (Case 1).

Case 1.

This patient was a young woman who had undergone a resection of approximately 6 ft. of the ileum, together with the ascending colon for Crohn's disease. A laparotomy performed for other reasons six years later revealed no active intestinal disease and a well-functioning end-to-end ileo-transverse anastomosis. Intestinal function tests (Fig. 5) showed that she absorbed glucose and folic acid normally. She had no steatorrhoea and the faecal nitrogen was normal. However, her absorption of vitamin B₁₂ was subnormal and this absorption defect was not corrected by preliminary treatment with chlorotetracycline (Fig. 5). This is an example of an ileal resection causing an isolated absorption defect for vitamin B₁₂.

Group 2. The second group of patients have undergone more extensive resection of the distal small intestine. In these patients there is steatorrhoea in addition to malabsorption of vitamin B₁₂, but glucose and other water-soluble vitamins may be absorbed normally. The results of the intestinal function tests in such a patient are also illustrated in Fig. 5 (Case 7).

Case 7.

This patient, a young man aged 24, had undergone a
resection of all the small intestine, but for the proximal 4 ft. of the jejunum an end-to-end jejunocolic anastomosis had been performed. Since he had some residual proximal intestine he was able to absorb glucose and folic acid normally (Fig. 5). Other studies, not included in the figure, showed that he also absorbed normal amounts of H-labelled pyridoxine and ascorbic acid. However, he had marked steatorrhoea, less than 70% of the dietary fat being absorbed. He also excreted between 5.4 and 6.6 g. of nitrogen in his stools, suggesting malabsorption of protein, and he was unable to absorb vitamin B₁₂ (Case 7, Fig. 5). The absorption defect in this patient was therefore limited to vitamin B₁₂, fat, and protein.

Group 3. The third type of malabsorption is illustrated by a patient who had undergone a massive intestinal resection (Fig. 5, Case 9).

Case 9. This patient was an elderly lady who developed gangrene of the bowel as a result of mesenteric artery thrombosis. All the small intestine except the duodenum and proximal 8 in. of the jejunum was resected, end-to-end anastomosis being performed between the jejunum and the transverse colon. The results of the intestinal function tests, carried out six months post-operatively, are shown in Fig. 5 (Case 9). This patient's resection was so massive that there was not only steatorrhoea and failure to absorb vitamin B₁₂, but also interference with the absorption of glucose and folic acid (Fig. 5).

Effect of increasing dietary fat after distal resection. Since the ileum is an important part of the functional reserve of the small intestine for the absorption of fat, patients who have undergone distal resections are not able to tolerate large amounts of dietary fat. When the fat intake is increased, increasing amounts of fat are excreted in the faeces and the resulting steatorrhoea may cause severe diarrhoea. This is illustrated by the results in two patients shown in Fig. 6.

Case 1.

The first patient was the lady who had an isolated absorption defect for vitamin B₁₂ and no steatorrhoea when receiving a 60-g. fat diet. When the fat intake was increased the residual proximal intestine responded to the increased load with an increased absorption, but at the same time increasing amounts of fat escaped absorption and were excreted in the faeces, causing increasing degrees of steatorrhoea (Fig. 6).

Case 5.

The second patient had a more extensive distal resection and had steatorrhoea when on a diet containing as little as 30 g. of fat. As in the previous patient, more fat was absorbed when the dietary fat was increased, but the increased absorption was only achieved at the expense of an increased faecal excretion of fat (Fig. 6).

Improvement in intestinal function. Althausen, Doig, Uyeyama and Weiden (1950) have demonstrated that there may be some improvement in intestinal function during the first few weeks after extensive distal resection of the small intestine. Glucose tolerance tests, flat one week post-operatively, may become normal at six weeks. In general, however, little or no improvement in intestinal function takes place after the first four to six weeks. In Case 7, for instance, there was a similar degree of steatorrhoea five years post-
operatively as had been demonstrated within two months of the resection. None of the patients with distal resections (Table 1), whose absorption of vitamin B₁₂ was subnormal, have hitherto recovered their ability to absorb this vitamin.

(2) Proximal resections

Although the transport mechanisms in the mucosa of the ileum are in general less active than those in the proximal intestine (Verzar and McDougall, 1936; Cummins and Jussila, 1955; Dawson and Isselbacher, 1960), the slower transit of the intestinal contents through the distal small bowel facilitates absorption in this area and the ileum is therefore capable of absorbing those substances which are normally absorbed in the jejunum. For these reasons, resection of the proximal small intestine does not usually cause any significant degree of malabsorption unless the resection is massive. This is illustrated by the two patients whose intestinal function tests are shown in Fig. 7. These results in these patients have also been described by Booth and Mollin (1960a).

CASE 10

The first patient had undergone resection of the proximal 8 ft. of the jejunum and an end-to-end anastomosis had been performed. His glucose tolerance was repeatedly flatter than normal (Fig. 7), a finding which is in keeping with the observation that glucose is absorbed more slowly from the distal than from the proximal small intestine (Cummins and Jussila, 1955). Folic acid absorption, however, was normal. There was no steatorrhea and, as might be expected, he absorbed vitamin B₁₂ normally. Apart from the rather flat glucose tolerance test, there was therefore no significant absorption defect in this patient, and the normal absorption of vitamin B₁₂ contrasts with the inability of the patients with a comparable distal resection to absorb this substance (Case 10, Fig. 7).

CASE 11

The second patient was a child who had had the misfortune to lose all the small intestine but for the distal 15 in. or so of terminal ileum, the stomach being anastomosed directly to the ileum and the closed duodenum forming a blind pouch. As in the previous patient, the glucose tolerance test was flatter than normal (Fig. 7). Folic acid absorption was not measured. This patient’s resection had caused moderate steatorrhea, 12 g. of fat being excreted in the stools daily on a dietary intake of 48 g., but this result indicates that the terminal ileum can absorb as much as 36 g. of fat from this diet. Even though so little of the ileum remained, the absorption of vitamin B₁₂ was normal (Fig. 7). Detailed studies in this patient have been reported by Clayton and Cotton (1961).

Effect of increasing dietary fat after proximal resections. In contrast to the results in the patients with distal resection (Fig. 6), increasing amounts

Fig. 7.—Intestinal function tests after resection of the proximal small intestine. (Data from Booth and Mollin, 1960a.)
of dietary fat may be well tolerated after resection of the proximal intestine. This is illustrated by the results of successive fat balances in the patient who had undergone resection of the jejunum (Fig. 8).

Case 10

This patient (Case 10, Fig. 8) excreted a mean of only 6.5 g. of fat daily after a six-day balance, when he received a diet containing just less than 50 g. of fat. When the dietary fat was increased there was a slight increase in fecal fat excretion (Fig. 8), but the mean daily excretion when the diet contained as much as 150 g. of fat was only 8.2 g. and the amount of fat absorbed increased progressively as the fat intake was increased. The results in this patient emphasize again the remarkable functional reserve of the ileum for the absorption of fat.

Treatment and Prognosis

(1) **Distal resections**

Since patients with resection of the distal small intestine fail to absorb vitamin B₁₂, it is not surprising that they may develop B₁₂ deficiency and megaloblastic anemia. As after total gastrectomy, the onset of this deficiency in the adult is delayed for several years after the resection, for it only occurs when the body stores of vitamin B₁₂ in the liver have been exhausted. Patients with resection of the ileum, like patients with Addisonian pernicious anemia, therefore require treatment with vitamin B₁₂ indefinitely. As in Addisonian pernicious anemia (Ross and others, 1954), it is possible to treat such patients with oral B₁₂, providing that sufficiently large and unphysiological doses are given. For regular treatment, however, this method is not to be recommended, monthly injections being a surer and safer route of administration. Whether patients require other treatment depends on the extent of the distal resections.

Group 1. The patients in this group have an isolated absorption defect for vitamin B₁₂ and no other treatment than monthly B₁₂ injections is usually required (Booth and Mollin, 1959, 1960a). This is illustrated by the patient whose intestinal function tests were shown in Fig. 5 (Case 1).

Table 2

<table>
<thead>
<tr>
<th>Time after Oral Dose (hours)</th>
<th>Serum B₁₂ Concentration (µg. per ml.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>1/2</td>
<td>380</td>
</tr>
<tr>
<td>1</td>
<td>510</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
</tr>
<tr>
<td>3</td>
<td>510</td>
</tr>
<tr>
<td>4</td>
<td>560</td>
</tr>
</tbody>
</table>

Case 1

This lady has previously been reported by Booth and Mollin (1959, 1960a). She developed a mild macrocytic anemia (Hb. 11.9 g./100 ml., R.B.C. 4.1 M. per c.mm.) six years after her intestinal resection. Her serum B₁₂ concentration was subnormal, being 50 µg. per ml., and examination of her sternal marrow revealed megaloblastic change. In order to determine her response to oral treatment she was first given a single oral dose of 3,000 µg. crystalline vitamin B₁₂ and the serum B₁₂ concentration was measured at intervals during the next four hours. As the results given in Table 2 show, the serum B₁₂ level rose to normal after this very large dose of B₁₂ was given. These observations illustrate that the jejunum is capable of absorbing B₁₂ from such large and unphysiological doses, although unable to assimilate sufficient of the dietary B₁₂ which is absorbed through the agency of intrinsic factor. Although daily oral doses of crystalline B₁₂ could have been continued, she has not been given further oral therapy, but has received regular monthly injections of 200 µg. of vitamin B₁₂ for the past four years. She has remained well without other treatment.

Group 2. Since the patients in this group fail to absorb B₁₂, they too develop B₁₂ deficiency. However, their proximal intestine remains and they are able to absorb other water-soluble vitamins normally. They also appear to be able to absorb sufficient of the fat-soluble vitamins to maintain

Normal range: 140 to 900 µg. per ml. (Ross and Mollin, 1936).
their requirements. They therefore do not usually develop other vitamin deficiencies. Iron deficiency usually indicates bleeding from an anatomical lesion of the bowel and is not due to malabsorption. Provided they are treated with a high-protein, low-fat diet, these patients appear to require no vitamin supplements other than monthly injections of vitamin B₁₂. These aspects of their treatment are shown by the following case reports.

Megaloblastic anaemia due to B₁₂ deficiency. The development of B₁₂ deficiency in this group of patients is illustrated first by the young man whose intestinal function tests were shown in Fig. 5 (Case 7).

CASE 7

This patient had undergone resection of all but the proximal 4 ft. of the jejunum and he had marked steatorrhea and creatorrhea and failed to absorb vitamin B₁₂ (Case 7, Fig. 5). Characteristically, he absorbed glucose, folic acid, ascorbic acid and pyridoxine normally. He was treated with a high-protein, low-fat diet and, apart from oral iron and ascobic acid, no vitamins were given. Despite the extent of his resection, he was able to absorb his food sufficiently well to maintain his body weight. As expected, however, his serum B₁₂ concentration fell steadily and four years post-operatively he had developed a megaloblastic anaemia (Hb. 9.6 g./100 ml., R.B.C. 2.4 M. per c.mm.) associated with B₁₂ deficiency (serum B₁₂ concentration 60 μg. per ml.). He is now being treated with injections of vitamin B₁₂ (200 μg. once monthly) and remains well. Since he absorbs ascorbic acid normally, he clearly does not require this vitamin and since iron may also be absorbed in the proximal intestine, the oral iron has also been stopped. His steatorrhea is controlled by a low-fat diet and he usually has one stool daily. He has no evidence of any other deficiency state. Serum proteins are normal, prothrombin time remains normal, there are no electrolyte deficiencies and there is no evidence of demineralization of bone.

In infants B₁₂ deficiency may develop more rapidly after a distal resection than in adults. This may be due in part to the smaller store of vitamin B₁₂ in the infant liver (Mollin and Ross, 1956) and probably also to the greater B₁₂ requirement of the growth period. This may be illustrated by the case of a child who developed a large volvulus of the small intestine soon after birth. A detailed report of this patient has been given by Clark and Booth (1960).

CASE 8

In this patient at least two-thirds of the distal small intestine was resected within a week of birth and the jejunum was anastomosed to the transverse colon. She recovered from this procedure and for the first 10 months of her life her growth and development were normal for her age (Fig. 9). During this period she must therefore have been able to absorb or derive from tissue stores sufficient nutrients to maintain normal development. She then began to lose weight, had attacks of vomiting and developed severe diarrhoea. For the next three months her weight declined steadily. At 13 months, however, a mild macrocytic anemia was recognized (Hb. 11.0 g./100 ml., R.B.C. 3.7 M. per c.mm.) and her bone marrow was now found to be megaloblastic. Her serum B₁₂ was measured and was found to be extremely low, being 25 μg. per ml. Intestinal function tests were similar to those in the young man with a similar resection (Case 7, Fig. 5); she absorbed glucose normally, but had steatorrhea, absorbing no more than 73% and 81% of a 30-g. fat diet during successive balance periods, and she was unable to absorb any of a test dose of radioactive B₁₂.

Her response to treatment with vitamin B₁₂ (100 μg. daily by intramuscular injection for nine days) was remarkable (Fig. 9). Within 24 hours her diarrhoea and vomiting had ceased and she had started to put on weight. There was a reticulocyte response of 9% on the seventh day after the first injection and her sternal marrow became normoblastic. For 18 months she received no parenteral treatment other than vitamin B₁₂ (100 μg. every two weeks), and yet she continued to put on weight and grow at the rate expected for her age. This is a further example of a distal intestinal resection causing a pure B₁₂ deficiency state.

The results in these patients indicate the dangers of B₁₂ deficiency after resection of the distal small intestine. It is clear that patients with such resections, like patients who have undergone total gastrectomy, should be given prophylactic injections of vitamin B₁₂.

Iron-deficiency anaemia. A transient iron-deficiency anaemia is not unusual in the immediate post-operative phase and may be related to blood loss at the time of resection. If iron deficiency is persistent, or occurs later, it is usually due to
bleeding from an associated anatomical lesion of the bowel, such as a blind loop, and is not due to malabsorption. The side-to-side anastomosis in Case 6, for instance, was followed by the development of a large blind loop of the terminal small intestine (Fig. 4) and this patient suffered from recurrent iron-deficiency anaemia due to blood loss from the blind loop. His anaemia was only cured when the blind loop was corrected by further surgery.

Dietary management. Although no treatment other than vitamin B₁₂ may be necessary in some patients with lesions of the distal small intestine, dietary management may also be important in others, particularly if the lesion is extensive (Booth and Mollin, 1960b). Since these patients have lost their ileum, there is little functional reserve for fat absorption and on high fat intakes steatorrhoea may be severe, causing incapacitating and troublesome diarrhoea. If marked steatorrhoea continues for any appreciable length of time, the persistent loss of electrolytes in the faeces may lead to hypoponatremia, hypokalaemia and hypocalcaemic tetany.

In some cases magnesium deficiency may also occur (Fletcher, Henly, Sammons and Squire, 1960). These deficiencies are usually the result of taking a high-fat diet and the diarrhoea and electrolyte deficiencies may often be corrected simply by restriction of the dietary fat. This is illustrated by the following case report:

Case 4

The patient was a 48-year-old housewife who had a 10-year history of regional enteritis involving the ileum. She had undergone repeated intestinal operations, resection or short circuits of the distal small intestine being performed on five occasions. For 10 years she had suffered from diarrhoea, passing six or eight bulky fatty stools daily. At the end of this time a further laparotomy revealed two blind loops of the terminal small intestine. These were resected and an end-to-end anastomosis was performed between the end of the remaining small intestine and the transverse colon. There was no evidence of regional enteritis at this operation. The amount of small bowel remaining was uncertain, but seemed unlikely to exceed 6 ft. Post-operatively she was treated first with a low- and then with a high-fat diet and on the latter regime she had marked diarrhoea, passing eight or 10 stools daily. Her weight fell and two months after the operation she was very ill. She was thin and wasted and had spontaneous tetany. Investigations now revealed multiple electrolyte deficiencies (serum sodium 143, potassium 2.7 and calcium 3.6 mEq/l.). There was also evidence of severe magnesium deficiency, for the serum magnesium was only 0.3 mEq/l. (normal range 1.5 to 1.8 mEq/l.) (Alcock, McIntyre and Radde, 1960). She had low-serum proteins (albumin 2.7, globulin 2.4 g., %) and a megaloblastic anaemia due to B₁₂ deficiency (Hb. 7.2 g./100 ml., R.B.C. 1.8 M. per c.mm. and serum B₁₂ concentration 15 μg. per ml.). Bone X-rays, however, showed no evidence of osteomalacia and a bone biopsy was normal. Intestinal function tests were characteristic of a patient with an extensive resection of the distal small intestine—she absorbed glucose and folic acid normally but had steatorrhoea and failed to absorb vitamin B₁₂.

She was first treated with oral potassium supplements and subsequently with injections of calciferol. This treatment restored her serum potassium and calcium to normal levels, but, although her tetany now disappeared, her serum magnesium remained as low as before. At the same time she was treated with a low-fat diet (32 g. daily). Her body weight and serum magnesium level during the next three months, together with the amount of fat and protein in the diet, are shown in Fig. 10. As this figure shows, her serum magnesium rose to normal levels on the low-fat regime without any supplements of magnesium being given. She was subsequently given a high-fat diet (138 g. daily) and the serum magnesium level once again fell, only rising to normal again when the low-fat diet was resumed. Magnesium balances* (Table 3) revealed the reason for this response. On the low-fat diet the patient was in positive magnesium balance and excreted between 5.4 and 13 g. of fat daily in the stools. The high-fat diet caused an increase in the faecal fat and a negative magnesium balance was induced (Table 3), the increased faecal fat excretion presumably washing magnesium out of the body, possibly in the form of insoluble soaps. This patient’s diarrhoea was very much improved when the low-fat diet was given and no further electrolyte supplements have been necessary.

These results illustrate the importance of a low-fat diet in this patient. However, in such patients it is equally important that sufficient dietary protein should be given. If there is an extensive lesion of the distal small intestine, there may be interference with protein absorption and so the faecal nitrogen may be high (Case 7, Fig. 5). A high-protein diet is therefore required to compensate for the faecal loss of protein. This is also illustrated by the results in Fig. 10.

Case 4

Initially the patient was given a diet containing approximately 60 g. of protein and on this regime she lost weight (Fig. 10). Although her diarrhoea had been much improved by the low-fat diet, her faecal nitrogen was high (between 3.7 and 6.6 g. per day), indicating malabsorption of protein. It was not until the dietary protein was increased to 120 g. that she began to put on weight and her serum albumin rose to normal levels. This response indicates that increasing amounts of protein can be absorbed from the limited small intestine available when the dietary protein is increased, as this may also occur with fat (Fig. 6). She had continued to receive a high-protein, low-fat diet and the only vitamin supplement she has received is vitamin B₁₂. She has remained well.

Group 3

The treatment of patients who have undergone massive resection of the small intestine may be less rewarding and prognosis should therefore be guarded. The minimum amount of the small intestine required to support life has not yet been firmly established, but it appears to be surprisingly little, survival being comfortably possible.

* Magnesium studies in this patient were carried out in collaboration with Dr. I. McIntyre.
December 1961

BOOTH: The Metabolic Effects of Intestinal Resection in Man

with only 14 to 18 in. of residual small intestine (Meyer, 1946 and 1954; Cogswell, 1948; Alt-hausen, Uyeyama and Simpson, 1949; Schwartz, Medwidi, Roberts, Sleisinger and Randall, 1956; Kogan, Shapira, Janowitz and Adlersberg, 1957). But life is possible with very much less small intestine than this. One patient has been described who survived for three years after resection of all but the proximal 7 in. of the jejunum (Jackson, Linder and Berman, 1951), and another, whose intestinal function tests were shown in Fig. 5 (Case 9), and in whom only 8 in. of jejunum remained, survived for as long as nine months even though over 80 years of age (Harrison and Booth, 1960). The most extensive resection yet recorded is that of Kinney, Goldwyn, Barr and Moore (1961), whose patient has survived for one year after resection of the entire jejunum, ileum and right colon. This unfortunate person has been taught to pass a naso-gastric tube through which he feeds himself with small amounts of a fat-free synthetic diet at frequent intervals. He also receives supplemental vitamin therapy. Although only his duodenum remains, he is able to live comfortably at home, a tribute to his courage and to the skill of his medical advisers.

An example of the treatment and progress of a patient with a massive resection is provided by the elderly lady, previously referred to, who had undergone resection of all but the proximal 8 in. of the jejunum. In view of her age, it is perhaps not surprising that, despite vigorous supportive treatment, she suffered from progressive malnutrition which led ultimately to her death. This patient has been reported in detail by Harrison and Booth (1960).

FIG. 10.—Response of body weight and serum magnesium to treatment with diets of varying protein and fat content (Case 4).

Table 3

Effect of Varying Dietary Fat on Magnesium and Fat Balances* After Extensive Resection of the Distal Small Intestine

<table>
<thead>
<tr>
<th>Regime</th>
<th>Balance No.</th>
<th>Dietary Fat (g./day)</th>
<th>Faecal Fat (g./day)</th>
<th>Dietary Mg. + (mEq./day)</th>
<th>Faecal Mg. + (mEq./day)</th>
<th>Urinary Mg. + (mEq./day)</th>
<th>Mg. + Balance (mEq./day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low fat diet</td>
<td>1</td>
<td>32</td>
<td>8.4</td>
<td>14.0</td>
<td>7.2</td>
<td>0.2</td>
<td>+ 6.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>32</td>
<td>13.0</td>
<td>12.0</td>
<td>9.1</td>
<td>0.0</td>
<td>+ 2.9</td>
</tr>
<tr>
<td>High fat diet</td>
<td>1</td>
<td>138</td>
<td>19.0</td>
<td>14.0</td>
<td>24.0</td>
<td>1.9</td>
<td>-11.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>138</td>
<td>21.0</td>
<td>14.0</td>
<td>20.0</td>
<td>0.8</td>
<td>- 6.8</td>
</tr>
</tbody>
</table>

*All balances were carried out over three day periods.
Case 9: Resection of All But Proximal 8 Inches Jejunum

![Graph showing body weight, haemoglobin, and serum albumin after resection of all but the proximal 8 inches of the jejunum (Case 9).](http://pmj.bmj.com/)

Despite all measures, however, this patient’s weight continued to decline and she finally died nine months after the operation. The reason for her death was obscure. Although she was losing weight progressively, her serum albumin and electrolytes (including magnesium) were normal and her haemoglobin was over 70%. Clinically there was no evidence of any specific vitamin deficiency and, apart from the obvious malnutrition, the only significant feature was the development of mental confusion alternating with apathy in the two weeks that preceded her death. Mental changes were also a feature in the patient described by Jackson and his colleagues (1951), who died three and a half years after a similar resection (Jackson and Linder, 1953; Linder, Jackson and Linder, 1953).

(2) **Proximal resections**

As shown in Fig. 7, resection of as much as 8 ft. of the jejunum (Case 10) causes no significant malabsorption. A patient with such a resection will therefore develop no nutritional deficiency and no treatment is necessary. If the resection is sufficiently extensive to cause steatorrhoea, dietary management may be important. This is illustrated by the response to dietary treatment in the child who had only the distal half of the ileum remaining (Fig. 12).

Case 11

This patient, of whom a detailed report has been given by Clayton and Cotton (1961), developed an intussusception complicated by gangrene at the age of 10 months and it was estimated that 135 cm. of the intestine was removed, leaving 38 cm. (15 in.) distally.
Summary and Conclusions

This paper seeks to illustrate the importance of physiological principles in guiding effective and rational treatment. If the sites at which absorption normally occurs in the small intestine are known, it is easy to understand what pattern of malabsorption will follow a given resection.

Patients with resections of the distal small intestine may be classified in three groups. A localized resection of the ileum may be associated with an isolated defect of vitamin B₁₂ absorption (Group 1) and such a patient therefore requires no other treatment than injections of this vitamin. More extensive resections of the distal small intestine cause steatorrhoea and creatorrhoea in addition to malabsorption of vitamin B₁₂ (Group 2). Patients with such resections require a high-protein, low-fat diet in addition to treatment with vitamin B₁₂. Providing sufficient proximal intestine remains to absorb glucose and folic acid normally, no other treatment is usually necessary. Massive distal resections, leaving only a few inches of the proximal jejunum, cause interference with the absorption of glucose and folic acid in addition to steatorrhoea and failure of B₁₂ absorption (Group 3). Survival is possible after such resections, but prognosis should be guarded.

The failure of resection of up to 8 ft. of the jejunum to interfere with the absorption of glucose, folic acid or fat indicates that the ileum is capable of taking over the functions of the proximal intestine. Even after a massive proximal resection the terminal ileum is capable of absorbing much of the dietary fat and B₁₂ absorption remains normal. However, after such a resection steatorrhoea may be incapacitating unless controlled by a low-fat diet and high-protein feeding is best achieved when the protein is given in solid forms.

It is important to recognize that remarkably little residual small intestine is necessary for life and survival is possible after even the most massive resection.

I am particularly grateful to Dr. D. L. Mollin for much stimulating discussion and for permission to quote details of the B₁₂ studies, and to Dr. I. Chanarin for carrying out the folic acid absorption tests. I also wish to thank Dr. F. Avery Jones, Dr. N. F. Coghill, Dr. Barbara Clayton, Dr. P. R. Evans, Dr. R. J. Harrison, Mr. D. P. van Meurs and the physicians and surgeons of Hammersmith Hospital for kindly allowing studies on patients who were under their care; and I am indebted to Dr. Ian McIntyre for the magnesium studies in Case 4.

Figs. 3 and 4 are reproduced through the courtesy of Dr. J. W. Laws and the Editor of the British Journal of Radiology, and Figs. 8 and 11 with the permission of the Editor of Gut. Figs. 9 and 12 are modified from illustrations previously published in the Archives of the Diseases of Childhood.

The Metabolic Effects of Intestinal Resection in Man

C. C. Booth

Postgrad Med J 1961 37: 725-739
doi: 10.1136/pgmj.37.434.725

Updated information and services can be found at:
http://pmj.bmj.com/content/37/434/725.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/