A CASE OF RENAL ASThma

R. R. ASHBY, M.B., M.R.C.P.

E. J. M. CAMPBELL, M.D., M.R.C.P.

The Professorial Medical Unit, The Middlesex Hospital, London, W.1

The patient described in this paper appeared to have asthma. His noisy wheezing was shown to be due to overbreathing caused by renal acidosis. The problems presented by the diagnosis and treatment provide good illustrations of the interrelationships of respiratory and renal function, acid-base regulation and potassium metabolism, thereby enabling us to put the old concept of renal asthma into modern perspective.

The association of 'asthma' with renal disease has been noted for a long time. The term 'renal asthma' is commonly used, but its incorporation into the literature has been insidious and it has been used in many ways. Garrison (1929) stated that Friedrich Hoffman was probably the first to describe the occurrence of asthma in dropical conditions in 1707. Although Bright (1827) included breathlessness in his original descriptions of chronic nephritis, Osler (1892) seems to have been the first to distinguish cardiac failure as a cause from uraemia. Osler (1892), describing uraemic dyspnœa, stated: 'Sudden attacks of oppressed breathing, particularly at night, are not infrequent. This is often a uraemic symptom, but sometimes cardiac. The patient may sit up in bed and gasp for breath, as in true asthma.'

Case Report

The patient, N. P., is an unmarried retired postman aged 64 years. He had a myocardial infarction in 1954. In January 1959 he was investigated for 'fainting attacks' and 'trembling of the limbs'. Parkinsonism was noted. No fits or fainsn were observed and an EEG was not suggestive of epilepsy. He also complained of frequency of micturition during the day and night. A moderately large prostate gland was noted. Three months later lower abdominal pain and tenderness developed, and a perforated gangrenous appendix was removed. He appeared in the Casualty Department in June 1959 on three successive days prior to admission, complaining of wheezing and difficulty in breathing. On the third visit the dyspnœa and wheezing were very severe. There was no improvement on giving intravenous amorphylamine, and on June 22, 1959, he was admitted to the ward as a case of status asthmaticus. Notes of his previous attendances were not then available. He was unable to give a history owing to severe dyspnœa. He was wheezing loudly.

Examination showed a cold, pallid, sweating man; temperature 96°F, pulse 76/min., respirations 46/min. and blood pressure 110/70. The accessory muscles of respiration were contracting strongly, and there were inspiratory and expiratory rhonchi in all parts of the lungs. There was no oedema of the legs or sacrum, and the jugular venous pressure was not raised. He did not respond to subcutaneous adrenaline or an iso-renal spray. A little later it was noticed that the movements of the chest were not only forceful but of larger amplitude than would be expected if the breathing was severely obstructed. The possibility of overbreathing rather than difficulty in breathing was considered, and the partial pressure of carbon dioxide (P\textsubscript{CO\textsubscript{2}}) in the mixed venous blood was estimated. This was only 19 mm.Hg (equivalent to an arterial P\textsubscript{CO\textsubscript{2}} of about 13 mm.Hg). A further physical examination of the abdomen was carried out. This was difficult owing to the patient's posture (he resisted being made to lie down) and the forceful abdominal movements associated with breathing. The bladder was often to be distinguished and rectal examination showed moderate enlargement of the prostate. In view of these features the emphasis at once shifted from bronchial asthma to a metabolic acidosis consequent upon renal failure.

The blood urea was 388 mg/100 ml and the arterial blood pH was 6.98 (directly measured). The total carbon dioxide content (T\textsubscript{CO\textsubscript{2}}) of arterial plasma was 5.1 mEq/l, and the bicarbonate was 4.7 mEq/l. Therefore, he had a metabolic acidemia, incompletely compensated by a secondary respiratory alkalosis (Point A, Fig. 1). It was impossible to pass a catheter per urethra, so a suprapubic catheter was introduced under local anesthesia. This immediately drained 1,050 ml of blood-stained urine (pH 5.2, S.G. 1.020) and subsequently 180-200 ml/hr. For the 24 hours, June 22-23, 1959, he was given intravenous 1/6 molar lactate to combat the metabolic acidosis. By the evening of June 22-23, 1959, he had lapsed into coma.

On June 23, 1959, his temperature had risen to 101°F. and some purulent sputum was aspirated from the trachea. Vigorous physiotherapy was continued. He was comatose but responded to painful stimuli. The pH of the blood was now 7.47, there being an alkalæmia due to persistent hyperventilation (B, Fig. 1). The P\textsubscript{CO\textsubscript{2}} and bicarbonate remained low. The blood urea was 380 mg/100 ml and the plasma potassium low (3.6 mEq/l). Details of blood chemistry are shown in Table 1. The urine output over the previous 24 hours was approximately 5 l. For the next 24 hours, June 23-24, 1959, he therefore received 2 l each of normal saline and 5% dextrose. Intravenous potassium, 80 mEq., was given as the citrate to try and correct the hypokalaemia. This was considered to be safe as the urine output was good and the S.G. was often 1.020. The urine remained acid in spite of the alkalæmia.

By June 24, 1959, he was more responsive. The hyperventilation was slightly less than on admission but the alkalæmia continued, the pH being 7.55; the bicarbonate concentration by this time was normal (C, Fig. 1). In spite of the previous intravenous potassium the plasma value was only 3.3 mEq/l. Plasma sodium and chloride had risen to 154 and 128 mEq/l respectively. The blood urea had fallen to 310 mg./100 ml. Over the previous 24 hours he had passed approximately 5 l. urine at a rate of 200 ml/hr. For the next 24-hour period, June 24-25, 1959, he was...
FIG. 1.—Bicarbonate/pH diagram. The letters and arrows A → E indicate the progress of the acid-base disturbance as described in the text and in Table 1.

TABLE 1

<table>
<thead>
<tr>
<th>Date</th>
<th>pH</th>
<th>(\text{Pco}_2) (Rebreath) mm.Hg</th>
<th>(\text{Pco}_2) (Nomogram) mm.Hg</th>
<th>(\text{Tco}_2) mMol./l.</th>
<th>(\text{HCO}_3^-) mEq./l.</th>
<th>Plasma K+ mEq./l.</th>
<th>Plasma Na+ mEq./l.</th>
<th>Plasma Cl- mEq./l.</th>
<th>Blood Urea mg./100 ml.</th>
<th>Point in Fig. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>6.98</td>
<td>13</td>
<td>19</td>
<td>5.1</td>
<td>4.7</td>
<td>—</td>
<td>138</td>
<td>—</td>
<td>388</td>
<td>A</td>
</tr>
<tr>
<td>23</td>
<td>7.47</td>
<td>25</td>
<td>22</td>
<td>15.8</td>
<td>15.1</td>
<td>3.6</td>
<td>150</td>
<td>123</td>
<td>380</td>
<td>B</td>
</tr>
<tr>
<td>24</td>
<td>7.55</td>
<td>27</td>
<td>26</td>
<td>21.8</td>
<td>21.0</td>
<td>3.3</td>
<td>154</td>
<td>128</td>
<td>310</td>
<td>C</td>
</tr>
<tr>
<td>25</td>
<td>7.56</td>
<td>29</td>
<td>29</td>
<td>25.3</td>
<td>24.5</td>
<td>4.0</td>
<td>154</td>
<td>123</td>
<td>125</td>
<td>D</td>
</tr>
<tr>
<td>26</td>
<td>7.55</td>
<td>32</td>
<td>28</td>
<td>23.9</td>
<td>22.1</td>
<td>4.2</td>
<td>152</td>
<td>124</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>7.52</td>
<td>27</td>
<td>27</td>
<td>21.2</td>
<td>20.4</td>
<td>3.8</td>
<td>144</td>
<td>116</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>4.3</td>
<td>140</td>
<td>107</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>7.48</td>
<td>35</td>
<td>28</td>
<td>19.5</td>
<td>18.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>2</td>
<td>7.45</td>
<td>30</td>
<td>19.0</td>
<td>18.2</td>
<td>3.1</td>
<td>139</td>
<td>107</td>
<td>56</td>
<td>E</td>
</tr>
<tr>
<td>4</td>
<td>7.40</td>
<td>38</td>
<td>27</td>
<td>23.0</td>
<td>23.0</td>
<td>3.3</td>
<td>134</td>
<td>109</td>
<td>40</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>4.7</td>
<td>142</td>
<td>109</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Sept.</td>
<td>5</td>
<td>Operation</td>
<td>41</td>
<td>—</td>
<td>22.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>7.43</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

\(\text{Pco}_2 \) — Partial pressure carbon dioxide, blood. (The first value is the mixed venous \(\text{Pco}_2 \) minus 6 and the second value is that calculated from the pH and bicarbonate concentration.)

\(\text{Tco}_2 \) — Total carbon dioxide content, blood.

(\(\text{HCO}_3^- \)) — Bicarbonate concentration, blood.
therefore given 4 l. 5% dextrose. No sodium or chloride was given because of hypernatraemia and hyperchloremia, but a further supplement of 240 mEq. of potassium was given intravenously.

On June 25, 1959, the patient was speaking quite rationally at intervals and the blood urea had fallen to 125 mg./100 ml. Hyperventilation continued. The hypernatraemia and hyperchloremia persisted in spite of no saline having been given over the previous 24 hours. The plasma potassium remained rather low (4 mEq./l). The arterial pH was 7.56, showing a continuing alkalinaemia. The plasma bicarbonate concentration was now increased (D, Fig. 1); there was thus a metabolic alkalosis and at this stage the urine became alkaline. No saline was given, but a further 150 mEq. of potassium with 5% dextrose were given intravenously. The haemoglobin concentration was found to be 52%, and he was given 1 l. of blood. During the night Cheyne-Stokes respiration began. Intravenous potassium was temporarily discontinued at this stage with no change in the Cheyne-Stokes respiration which continued intermittently over the next two days.

On June 26, 1959, there was a great clinical improvement. He had passed approximately 2 l. of alkaline urine during the previous 24 hours at a rate of 80 ml./hr. He was able to take 750 ml. of glucose and water by mouth that day. The blood urea had fallen to 93 mg./100 ml. Plasma sodium and chloride were persistently high, i.e. 152, 124 mEq./l. respectively. The plasma potassium was 4.2 mEq./l. Dextrose 5%, 3.5 l., was given by intravenous route.

On June 27, 1959, he was talking intelligently. The arterial pH remained around 7.5 and the plasma potassium was 3.8 mEq./l. He had passed approximately 2 l. alkaline urine over the previous 24 hours with a potassium content of 35 mEq. Plasma sodium and chloride were now 144 and 116 mEq./l. respectively. Over the next 24 hours he received by intravenous route 240 mEq. sodium. The chloride given was reduced to 160 mEq. owing to the hyperchloremia, and a further 120 mEq. potassium was given.

From this stage onward he made rapid improvement. By June 29, 1959, the plasma electrolytes and blood urea were normal. There was, however, persistent hyperventilation and the plasma bicarbonate concentration fell below normal (E, Fig. 1). By July 1, 1959, it was evident that it would be necessary to continue with oral potassium supplements. The plasma potassium tended to fall and he became hypotensive and rather flaccid. Supplement of potassium chloride 3150 mEq. (38 mEq.) daily were therefore given. The Pco2 and bicarbonate returned to normal a few days later (F, Fig. 1).

Throughout July his general state improved. It was necessary to keep the suprapubic catheter in place, but after a period of convalescence a retropubic prostatectomy for benign hyperplasia was performed. The patient made excellent progress and values for pH and Pco2, two weeks after operation, were normal without potassium supplements (F, Fig. 1).

Methods Used

The plasma sodium, potassium, chloride, blood urea and urine electrolytes were estimated by the Courtauld Institute of Biochemistry. Plasma sodium and potassium were measured by flame photometry, plasma chloride by the method of Van Slyke and Hiller (1947), and blood urea on the autoanalyser, using a modification of the diacetyl monoxamine method. Other investigations performed in the Medical Unit laboratory were as follows:

(1) The pH of arterial blood was determined directly at 37.5°C, using a glass electrode, the Wynn system (Wynn and Ludbrook, 1957) and a "Vibron" pH meter (Electronic Instruments Ltd.). The instrument was standardized against a phos- phate buffer of pH 7.35.

(2) The partial pressure of carbon dioxide in blood (Pco2) was determined in three ways: (a) by calculation from pH and Tco2, using the nomogram of Singer and Hastings (1948); (b) by the rebreathing method of Campbell and Howell (1960). This method estimates the Pco2 of mixed venous blood; arterial Pco2 is usually about 6 mm. Hg less. The figures given in Table 1 and referred to in the text are the mixed venous values less six and corrected for the patient's temperature (Severinghaus, Stupfel and Bradley, 1956); (c) by the 'direct' microtonometric method of Riley (Riley, Campbell and Shepard, 1957), also corrected for temperature.

(3) The total carbon dioxide content of arterial plasma (Tco2) was measured, using the method of Van Slyke and Neill (1924).

(4) The bicarbonate content of arterial plasma was calculated from the Tco2 and Pco2, taking the solubility coefficient of carbon dioxide in plasma as 0.03.

'True' plasma was used for these estimations (see discussion).

Discussion

Clinical Diagnosis

This patient presented as a case of status asthmaticus with loud wheezy breathing and ronchi throughout the lungs. The dyspnea had been present for three days and there was no appreciable response to bronchodilators. This diagnosis was only changed when the depth of breathing was noted. However, the clinical picture otherwise so closely resembled asthma that it was only after the mixed venous Pco2 had been found to be extremely low that this diagnosis was abandoned, and the temporary incomplete diagnosis of respiratory alkalosis was made. This does not occur in bronchial asthma, in which the Pco2 of the blood is usually normal, or in severe cases, high. In some mild cases there is slight over-ventilation, but any serious degree of obstruction prevents reduction of the Pco2 to the levels found in this patient. Clinically, the nature of the respiratory alkalosis was obscure until the enlarged bladder was noted. For a time primary respiratory alkalosis was considered and was supported by muscular twitching and the posture of his hands, which
The minimum admission to secrete ions of plasma potassium must be sufficient to maintain an equilibrium between intake, production and excretion. Therefore, the individual's potassium concentration is normally regulated by the kidney to maintain a balanced state of potassium ions in the body.

The Disturbance of Hydrogen Ion and Potassium Regulation

These may be summarized as follows and the changes shown in Fig. 1:

On admission there was a metabolic acidosis incompletely compensated by a respiratory alkalosis and therefore resulting in an acidemia. Within 12 hours, as a result of the administration of lactate, the metabolic acidosis was partly corrected, but the overbreathing continued almost unchanged. The respiratory alkalosis therefore became dominant, resulting in an alkalemia, which lasted 10 days. There were, therefore, two main stages: first, one of acidemia and second, one of alkalemia.

The following evidence of potassium depletion was obtained. Firstly, the plasma potassium was below normal or at the lower limits of normality from June 23 to July 6, 1959, despite an intravenous intake of 710 mEq. and a measured oral intake of 156 mEq. of potassium. Secondly, a potassium balance from June 25-28 showed a cumulative positive balance of 170 mEq. of potassium. This balance followed a day in which the intravenous intake of potassium was 240 mEq. Although this evidence was only obtained during the stage of alkalemia, it established that there must have been potassium depletion throughout the whole illness, despite the initially normal plasma potassium concentration.

The Genesis of the Hydrogen Ion and Potassium Disturbances

The patient had obstructive renal disease of moderately long standing, causing impairment of renal function. The metabolic acidosis was due to inability of the kidney to excrete hydrogen ions to maintain an equilibrium between intake, production and excretion. There are two main mechanisms by which inadequate excretion of hydrogen ions might have been brought about. Firstly, there may have been an inability of the tubule cells to secrete hydrogen ions in sufficient numbers or at sufficient concentration. This was a relative failure only, because the pH of the urine on admission was 5.2, which is not much greater than the minimum of 4.5 achieved by normal subjects under acid loading (Wrong and Davies, 1959).

The second possibility is that there was a deficient handling of buffers, including ammonia, by the renal tubules, and that this limited the rate of hydrogen ion secretion. Unfortunately, neither the ammonia concentration, nor the titratable acidity of the urine were measured.

The respiratory alkalosis was initially produced by stimulation of the breathing by the low blood pH. This tended to compensate for the metabolic acidosis. However, overbreathing continued after correction of the acidemia and the condition became one of persisting alkalemia. This was probably due to the potassium depletion (see below).

The probable explanation of the potassium depletion is a renal tubule defect in the conservation of potassium ion and thus a wastage in the urine. This is supported by the following facts: firstly, the urinary concentrations of potassium from July 3-6 were higher than would be expected in the presence of severe potassium depletion. According to Berliner, Kennedy and Hilton (1950), the urinary concentrations of potassium ion can normally be reduced to as little as 1 mEq./24 hrs. in severe depletion. Secondly, there is already evidence of renal tubule dysfunction, as shown by inability to excrete or buffer hydrogen ions. Berliner, Kennedy and Orloff (1951) showed that normally there is an exchange of potassium and hydrogen ions in the tubule cells, for sodium in the lumen. If hydrogen ions were retained, then the output of potassium ion into the lumen would be expected to rise. Estimations of urine potassium concentration were not made until the renal obstruction had been relieved and the patient was in the process of recovery. There must, however, have been increased renal loss over the weeks or months prior to admission to produce the state of depletion.

The alkalemia and a mild respiratory alkalosis persisted until early July. The persistence of overbreathing in the presence of a low partial pressure of carbon dioxide and a high extracellular pH is common to a number of conditions associated with potassium depletion. These include diabetic coma, severe diarrhea (Winters, Lowder and Ordway, 1958) and uro-picolic anastomosis (Westlake, 1954; Westlake and Campbell, unpublished). As a result of potassium depletion hydrogen ions probably pass to the intracellular compartment to replace potassium ions, thus causing an intracellular acidosis and an extracellular alkalosis. In this patient the extracellular acidosis was initially corrected by administration of lactate, but it was not until large amounts of lactate had been given that the hyperventilation ceased, suggesting that the full correction of the acidosis could only be achieved by restoring normal intracellular con-
centration of this ion. Presumably the renal tubule cells were included in the intracellular acidosis. Milne, Muercke and Heard (1957) have suggested that this can cause failure to maintain a maximal concentration gradient of hydrogen ion from tubule cell to lumen. Recent work by Milne and his co-workers has confirmed the presence of an intracellular acidosis in the muscles of potassium-depleted rats (Saunders, Irvine, Crawford and Milne, 1960). Therefore, in this patient a vicious circle may have been operative: the renal lesion causing inability to handle ammonium ion, and thus hydrogen ion, correctly; this in turn causing potassium depletion, which in turn aggravated the inability of the kidney to excrete hydrogen ion.

The marked periodic breathing during June 25–27 followed the administration of a large amount of potassium and we have observed the development of periodic breathing at such a time in another patient. We are unable to offer a satisfactory explanation.

The Evaluation of Hydrogen Ion Disturbance in Clinical Practice

To obtain a satisfactory evaluation of disturbances of hydrogen ion metabolism, knowledge of three variables is required: the pH, the partial pressure of carbon dioxide in the blood (Pco2) and either the plasma total carbon dioxide content (Tco2) or the bicarbonate concentration (HCO3–). If two are known, the third can be calculated by use of the Henderson-Hasselbalch equation:

\[
\text{pH} = pK' + \log \left(\frac{\text{HCO}_3^-}{\text{Pco}_2 \times 0.03} \right)
\]

This is not entirely satisfactory for three reasons: firstly, calculation of a third variable introduces some error, because the value of pK' (normally about 6.1) varies. Severinghaus, Stupfel and Bradley (1956) have shown that pK' varies inversely with pH and temperature. Secondly, there are other buffer systems in blood, notably hemoglobin, which are not included. These can be estimated if the hemoglobin concentration, oxygen saturation and plasma protein concentrations are known. Thus the whole blood 'buffer base' concentration can be calculated (Singer and Hastings, 1948). Thirdly, and most important, the measurements only described conditions in the extracellular fluid. Knowledge of intracellular pH in health and disease is almost non-existent.

The errors in the variables pH, Pco2 and HCO3– may arise in three ways, namely, the collection and storage of blood, the analytical techniques and in calculation of a third variable from the other two.

1. **Sampling and Storage of Blood** (see also Campbell, 1961). For Pco2 and pH measurements arterial blood is almost essential, but Brooks and Wynn (1959) have shown that blood taken from a vein on the back of the hand after warming is usually sufficiently 'arterialized' to give reasonable estimates of pH and Pco2. It must be stressed that failure to obtain arterialization of the blood can cause serious errors in these parameters. Measurement of Tco2 or (HCO3–) does not require that blood be collected with such care. Blood drawn from antecubital veins after stagnation by prolonged venous occlusion and exercise of the forearm muscles has only 3 mMol/l. more carbon dioxide than arterial (Ashby and Stewart, unpublished). In most clinical conditions, therefore, venous blood collected without special precautions is adequate. Care must, however, be used when making calculations of arterial pH or Pco2 (see below). pH and Pco2 measurements must be made on blood soon after withdrawal and the blood is best kept in the syringe. Blood to be used for measurements of Tco2 or (HCO3–) may be stored.

2. **Analytical Errors.** Tco2 and HCO3– can be measured to within ±0.2 mMol/l. (or mEq/L), using the Van Slyke apparatus. The pH can be directly measured to within ±0.02 units and Pco2 (Riley method or by the indirect rebreathing method of Campbell and Howell) to ±2 to 3 mm. Hg. The plasma used to estimate Tco2 (or HCO3–) must be separated from the cells while the Pco2 is maintained at or near that of arterial blood. If this is not done, falsely low values may be obtained—even if the plasma is equilibrated after separation ('separated' plasma—see Campbell and Dickinson, 1960, p. 199).

3. **Errors in Calculation.** The magnitude of the error in calculation of a third variable from the other two depends upon the values involved. In general, the error is magnified when the pH, Pco2 and HCO3– are low and minimized when the variables are above the normal range. This is well illustrated by comparing the measured pH of the present case with that calculated, taking various values (both observed and assumed) for the other variables (Table 2).

The observed pH on admission was 6.98. If we take the best estimate of plasma HCO3– concentration (that obtained on true arterial plasma after anaerobic collection and separation) and the best estimate of Pco2 (that obtained by the Riley method), then the calculated pH is 7.12. Table 2 shows the wide range in calculated pH values available on admission and shows that they all considerably underestimated the severity of the acidemia. This is particularly true of the values calculated from HCO3– concentration of venous blood taken, stored, transported, separated and equilibrated without special attention (second column in Table 2).
POSTGRADUATE MEDICAL JOURNAL

January 1961

Table 2

Possible Calculated Values for pH on Admission (June 22) (Observed Value 6.98)

<table>
<thead>
<tr>
<th></th>
<th>Arterial (HCO₃⁻)</th>
<th>Venous (HCO₃⁻)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial Pco₂:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 mm.Hg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Riley method)</td>
<td>7.12</td>
<td>7.29</td>
</tr>
<tr>
<td>Mixed venous Pco₂:</td>
<td>7.17</td>
<td>7.34</td>
</tr>
<tr>
<td>13 mm.Hg</td>
<td>(Rebreathing method)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.12</td>
<td>7.29</td>
</tr>
</tbody>
</table>

Table 3

Possible Calculated Values for pH on June 26, Assuming ±3 mm.Hg in the Estimation of Arterial Pco₂ by the Rebreathing Method (Observed pH 7.55)

<table>
<thead>
<tr>
<th></th>
<th>Arterial (HCO₃⁻)</th>
<th>Venous (HCO₃⁻)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial Pco₂ + 3:</td>
<td>7.42</td>
<td>7.49</td>
</tr>
<tr>
<td>35 mm. Hg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arterial Pco₂ - 3:</td>
<td>7.50</td>
<td>7.57</td>
</tr>
<tr>
<td>29 mm. Hg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Although only pH has been considered, comparable errors in the estimate of the Pco₂ or HCO₃⁻ concentrations can also occur in similar situations.

The practical conclusions to be drawn from these considerations is that the full assessment of the initial state requires measurement of pH, Pco₂ and Tco₂ or HCO₃⁻. Progress can probably be followed by serial estimations of any two of the variables.

Summary

(1) A case is described that initially presented as severe bronchial asthma. The discovery of hyperventilation rather than obstructed respiration, an enlarged urinary bladder and prostate gland and a low arterial pH led to the diagnosis of an acidosis consequent upon renal failure.

(2) The initial acidemia was converted to an alkalemia by correction of the extracellular metabolic acidosis. There was evidence of severe potassium depletion throughout the illness.

(3) The evaluation of hydrogen ion disturbance and the errors involved in clinical practice are discussed with examples drawn from the present case.

Acknowledgments

We are grateful to Professor A. Kekwick and Mr. L. P. Le Queux for permission to report this case. We thank Dr. H. S. Rawdon Smith, the House Physician, for his help, and the staff of the Bland-Sutton and Courtauld Institutes for their co-operation.

REFERENCES

ASHBY and CAMPBELL: A Case of Renal Asthma

A Case of Renal Asthma

R. R. Ashby and E. J. M. Campbell

doi: 10.1136/pgmj.37.423.43

Updated information and services can be found at:
http://pmj.bmj.com/content/37/423/43.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/