CORTISONE IN OPHTHALMOLOGY

By A. J. B. Goldsmith, F.R.C.S. and H. E. Hobbs, F.R.C.S.

With its complexity of tissues and clear media through which the reactions of many of these tissues can be directly observed under considerable magnification, the eye is in many ways the ideal experimental organ in which to observe the effects of a powerful agent such as cortisone; it is not surprising, therefore, that since the introduction of this drug a considerable mass of experimental and clinical observation has accumulated from which generally accepted indications for, and methods of, treatment have been derived.

In any consideration of the proper place of cortisone in ocular therapeutics, particularly when it is administered, as it generally is, by local application either by drops or by subconjunctival injection, it is essential always to bear in mind its local clinical effects. These, in ocular disease may be summarized, in so far as is possible at the present time, by saying that it blocks temporarily the exudative phases of inflammation, whether bacterial, allergic or traumatic in origin; that by inhibiting fibroblast formation in the process of repair it reduces the severity of, or in favourable circumstance may even prevent the damage and scarring which may be catastrophic visually, inherent in the later processes of resolution, fibrosis and repair generally; while—most important of all from the long-term therapeutic point of view—it influences, in no way that one is aware of, the basic cause of the disease process. It has been confirmed by clinical experience that it is entirely without effect on the organized sequelae of organic disease, nor has it any effect on degenerative conditions except in so far as they, or some of them, may, during some period of their evolution, be associated with exudative phenomena.

It follows from this very brief summary of its broad clinical effects that cortisone might be expected to be of greatest value in the treatment of certain acute inflammatory diseases of the eye, and in practice this has proved to be the case. In the management of such diseases it is fair to say that cortisone has provided the greatest advance in ocular therapeutics since the introduction of the various chemotherapeutic and antibiotic drugs now at our disposal. At first sight this statement may appear anomalous since it has been expressly stated that cortisone does not influence the fundamental cause of the disease process, but two points must be borne in mind. The first is that many inflammatory diseases of the eye are self-limiting, either in their entirety or in their relapsing acute exacerbations; the second, that in the eye a very small area of scarring, which in practically every other tissue of the body would be without demonstrable effect on its economy and function, may have serious or disastrous results so far as vision is concerned, as, for example, corneal scars resulting from various forms of keratitis, blocking up of the pupil by organization of the exudate poured out in a case of acute iritis and damage to the macular region of the retina by the oedema, or later by the scarring engendered by a disturbance in an adjacent region of the choroid. It is in the inhibition of such concomitants and sequelae of the acute inflammatory process that the great value of cortisone lies, so far as ocular diseases are concerned; but in using it, spectacular though its results may be, it is essential always to remember that in many of the conditions in which it is used the underlying causes of disease, the causes which may well be responsible for subsequent relapses, remain unaffected, and all possible steps must be taken to eliminate these if a cure in the real sense of the term is to be achieved. It cannot be too strongly emphasized that the making of a red eye white, gratifying though this may be, does not mean that everything necessary in the management of the case has been accomplished.

Before discussing some conditions in which cortisone is of proven value its mode of administration may be briefly reviewed. The effect of the drug upon the particular ocular lesion will, of course, depend upon the local concentration achieved and, where this is in the superficial tissues—conjunctiva, episclera or superficial corneal layers—drops of a dilution of 1:5 or 1:10 of the standard suspension (2.5 or 5 mg. per ml.) are usually effective. As a maintenance dose they may be used two or three times a day while in acute cases they may be given hourly. In acute inflammations of the anterior segment—iridocyclitis,
Fig. 1.—Syphilitis interstitial keratitis. Local cortisone treatment at onset of the attack. Eventual visual acuity 6/6. Faint corneal scars only.

Fig. 2.—Syphilitis interstitial keratitis. In this case cortisone was started only after a period of systemic anti-syphilitic treatment and when the keratitis was in a florid state. The end result is a dense central corneal scar and reduction of visual acuity to hand movements.
interstitial keratitis, etc.—0.25 ml. (6.25 mg.) of
the standard suspension is often given by injection
under the conjunctiva; whilst, if the posterior seg-
ment of the globe is affected, the injection may be
made further back, into Tenon’s capsule. The
injections, which cause little or no reaction, may
be repeated every three or four days if necessary
or may be superseded by drops once the desired
effect is achieved. Fortunately, in such cases, the
dosage is so small that no risk of side effects need
be considered and no precautions in regard to such
need be taken.

It is, of course, usual in cases treated with
cortisone, however well they may be expected to
respond, to continue with such other local treat-
ment—atropine, antibiotics and the like—as may
be indicated, while as soon as possible steps should
be taken to investigate or, when known, to treat
any systemic condition which may have a bearing
on the local disease.

Certain conditions, to which brief reference will
be made later, are also treated by systemic cor-
tisone and, of course, ACTH; in these the mode
of administration, dosage and precautions follow
general principles which need not be discussed;
during such treatment, however, the eye should be
kept under the most careful observation since its
response is not always that anticipated and
desired.

Whether local or systemic administration is
used, a word of warning is called for in those cases
diagnosed as of tuberculous aetiology. In these,
if the local reaction is allergic, proliferative and
exudative, in nature, immediate benefit may well
accrue; if, however, the local reaction is caseating
(and the differentiation may well be clinically
impossible) the use of either cortisone or ACTH
may lead to an almost immediate deterioration in
the condition of the eye, an indication of course
for the immediate cessation of these drugs and a
change to the appropriate antibiotic therapy.

In the ensuing very brief discussion of illustra-
tive specific ocular diseases in which cortisone is
used more emphasis will be laid on those in which
it is of proven value than on the others in which its
effect is merely symptomatic or capricious. Of
the former, the first to be mentioned is interstitial
keratitis. In its common form this is a manifesta-
tion of congenital syphilis occurring usually in
late childhood or adolescence. Both eyes tend to
be affected, often with an interval which may be of
months or even years between the two, but it is
unusual to have more than one attack in each eye.
Systemic antisyphilitic treatment, if given during
the course of an attack in one eye, has no influence
on its evolution; nor, given at this stage or earlier,
do es it diminish the liability of the second or of
both eyes as the case may be, to be affected by
the disease. Clinically the affected eye is inflamed,
red and painful, while there is a diffuse haze of the
cornea which is soon followed by the growth into
it of superficial and deep blood vessels. Patho-
logically there is, in the early stages, an inflam-
atory oedema of the deep layers of the cornea
with separation of the lamellae, a heavy leucocytic
infiltration and ingrowth of new vessels from the
limbal region. As the inflammatory process subs-
ides, there is left more or less dense scarring of the
deeper part of the cornea with permanent
vascularization and opacity which is usually dense
enough to interfere fairly seriously with clear
vision, while the presence of blood vessels pre-
judices the chances of a subsequent successful
keratoplasty in that sooner or later the graft itself
may become invaded by these vessels and become
opaque.

In these cases, if cortisone is administered at an
early stage, the obvious signs of inflammation, the
pain and redness of the eye disappear, the cornea
clears remarkably rapidly, its neovascularization is
inhibited or, if it has already started, ceases to
progress and the later sequelae of scarring and
opacification are prevented. The comparison be-
tween a case treated in the early stage with cor-
tisone and one first treated only when the cornea
was heavily vascularized, is well seen in the
illustrations (Figs. 1 and 2). It is interesting that
although the response to cortisone may be quite
dramatic and the eye may look almost normal
within a few days, the use of the drug must be
continued for some six to eight weeks, which is the
length of time the attack would have persisted in a
more or less florid form had its active manifesta-
tions not been masked in this manner; if it is
discontinued during this period the obvious
disease processes become reactivated. What pre-
cisely is happening in the corneal tissues during
this time to suppress their response to the noxious
factor causing the inflammation is not known.
From the fact that the other cornea may later be
involved it would appear, however, that the
process is a purely local one.

The aetiology of many cases of acute iridocyclitis
remains speculative and even in those cases in
which a definite association with diseases else-
where, such as Still’s disease, ankylosing spondyl-
itis and posterior urethritis, can clearly be dem-
onstrated, treatment of the apparently primary
condition cannot with certainty prevent recurrent
ocular trouble. This, however, is no reason for
not taking such measures as may be possible to
reduce the frequency and severity of the attacks
even although the ravages of these may be com-
pletely controlled. In iridocyclitis cortisone is of
most value in those attacks associated with marked
exudation, and in such its use even for a few days
only helps very greatly in controlling secondary glaucoma, in preventing the formation of adhesions of the iris to the lens and in the angle of the anterior chamber, and in preventing organization of the exudate to form a membrane occluding the pupil and interfering thereby with vision. In the more chronic, granulomatous forms of iridocyclitis, in which plastic exudation is not a prominent feature, cortisone is correspondingly of far less value and is perhaps best used only to tide over a temporary crisis until other therapeutic measures can begin to take effect. Somewhat similar considerations apply in cases of acute choroiditis affecting the posterior part of the uveal tract, although the response of acute choroiditis to cortisone given either systemically or by orbital injection is capricious and is by no means as marked, nor as satisfactory, as that of acute inflammations of the anterior segment of the eye.

The beneficial effects seen in iridocyclitis may present dramatically in cases of sympathetic ophthalmitis. In this condition, which typically follows a perforating wound of the ciliary region of one eye, a severe generalized inflammation of the whole uveal tract (iris, ciliary body and choroid) and retina develops, affecting not only the injured eye, but also the previously normal eye and progresses only too frequently to disruption of the whole ocular economy, shrinking of the eyes and complete blindness, the whole unfortunate course being accompanied by severe physical pain as well as the mental stress obviously involved. The pathogenesis of the condition is still obscure but it appears most likely on the evidence available to be primarily a virus infection of the uveal tract, probably with a secondary development of allergy to uveal pigment which tends to keep up activity once the primary virus infestation has died out. The possibility of sympathetic ophthalmitis has always been a grave anxiety to surgeons dealing with wounds of the eye and with these the generally accepted policy has always been to consider seriously excision of the eye, even when potentially useful, if the more active signs of inflammation do not show marked and definite evidence of subsiding within 10 to 14 days. With the advent of cortisone, however, this policy has shown a change, and, provided that the inflammation responds to the use of cortisone and that there is a reasonable chance of the injured eye being of value functionally or even only cosmetically, most surgeons feel happier in making more prolonged attempts to conserve the injured eye without feeling that they are running an unjustifiable risk in regard to both. Fortunately, also, even in established cases of sympathetic ophthalmitis, cortisone may be as useful as in interstitial keratitis, although in the former disease its use may have to be continued for as long as two years and when it is discontinued the eye must be watched carefully so that it can be resumed if necessary. There is no clinical indication as to when eyes suffering from this condition will be safe once the protective influence of cortisone is withdrawn.

As a corollary it will be obvious that cortisone will be of equal value in such conditions as operative wounds, in which, although the danger of sympathetic ophthalmitis is not anticipated, the eye reacts unfavourably either inherently, through the trauma involved, or by the liberation of irritant material such as soft lens matter. In these cases cortisone in the small quantities used seems to have little or no prejudicial effect on wound healing and often helps to tide over the early post-operative period and prevents more serious complications developing such as, for example, the invasion of the graft by blood vessels in an eye which has recently been subjected to the operation of keratoplasty.

In many acute localized lesions of the cornea, sclera and conjunctiva cortisone has a valuable role to play, provided always that adequate measures are taken to determine the cause and treat it where it is detectable. In infective conditions, provided that the infection has been brought under control, cortisone is unlikely adversely to affect healing when employed topically in the usual amounts. Intractable conjunctivitis, spring catarrh, phlyctenular keratoconjunctivitis, episcleritis and rosacea keratitis are all conditions in which its value appears to be chiefly in producing symptomatic relief and administration may have to be prolonged; in all of them it would seem justifiable to use cortisone in default or sometimes in anticipation of response to other therapeutic measures; but in view of our ignorance of the effects—if any—of really prolonged administration, it would equally seem advisable to take such other measures as may be available to achieve permanent cure or even only quasi-permanent symptomatic relief.

Finally there may be mentioned certain conditions in the treatment of which systemic cortisone or ACTH appears to offer a more efficient means of controlling the ocular manifestations of the disease than has been hitherto available.

Opacification of the vitreous by the passage into it of inflammatory exudates is an invariant but grave comitant of uveitis, either as iridocyclitis or as posterior uveitis, and the prognosis for ultimate visual recovery when once dense vitreous opacities have formed becomes progressively worse the longer their absorption is delayed. Cortisone, if it can reach the vitreous in adequate concentration during the stage of active exudation, may produce rapid clearing of the vitreous and dramatic visual improvement and in such cases the supple-
menting of intratenon injections by systemic ACTH is valuable.

In cranial arteritis an ocular concomitant is blindness, usually bilateral, due to involvement not of the central retinal artery but presumably of the small nutrient twigs supplying the optic nerve and usually occurring some little time after the other manifestations of pain in the face and head and tenderness of the temporal vessels. Immediate symptomatic relief of the latter group of symptoms is usually given by systemic cortisone in small doses; it is not known in what proportion of cases treated or untreated by cortisone, blindness supervenes, but the symptomatic relief, and the possibility that it may avert the ocular complication make its use eminently justifiable, especially as there is no other known method of preventing the lesion of the optic nerve, nor of alleviating it and restoring vision once it has developed.

Similar considerations apply in some of the demyelinating lesions, particularly perhaps neuro-optic neuritis. This is of varying severity and it is impossible to predict the outcome in terms of permanent visual impairment. Systemic cortisone in the early stages, however, often effects considerable immediate visual improvement, but it is impossible at the present time to say whether or not this is reflected in the eventual visual results.

To summarize, cortisone cannot be said to cure any ocular disease and its action is confined to the time it is administered and shortly thereafter. Its use can in no way justifiably replace specific aetiological investigation and treatment, since in the majority of the diseases in which it is used the ultimate prognosis is dominated by the tendency to relapses. Within this limitation its value is very great, particularly in acute cases and when the cause of the malady is eradicable, or the inflammation is self-limiting. There is no value, and every possible danger, in its haphazard administration in every chronic and recalcitrant disease affecting the eye particularly if, in these cases, it is allowed to become a substitute for rational consideration, diagnosis, investigation and treatment of the particular case.

CHEMOTHERAPEUTIC AND ANTIBIOTIC DRUGS

Reprinted from the Postgraduate Medical Journal

Price: 5s. the set, plus 3d. postage

INTRODUCTION: THE PRINCIPLES OF CHEMOTHERAPY
C. A. Keele, M.D., F.R.C.P.

CHEMOTHERAPY OF NON-TUBERCULOUS DISEASES OF THE CHEST
Horace Joules, M.D., F.R.C.P.

CHEMOTHERAPY OF PULMONARY TUBERCULOSIS
J. G. Scadding, M.D., F.R.C.P.

CHEMOTHERAPY OF NON-PULMONARY TUBERCULOUS CONDITIONS
Peter H. Buxton, M.R.C.P.

CHEMOTHERAPY AND THE VENEREAL DISEASES
R. R. Willcox, M.D.

CHEMOTHERAPY OF TROPICAL INFECTIONS OF THE BOWEL
A. R. D. Adams, M.D., F.R.C.P., D.T.M.

CHEMOTHERAPY OF MALARIA
Prof. F. Murgatroyd, M.D., F.R.C.P., D.T.M.

CHEMOTHERAPY OF TUBERCULOUS INFECTIONS OF THE URINARY TRACT
Arthur Jacobs, F.R.F.P.S.

CHEMOTHERAPY OF NON-TUBERCULOUS INFECTIONS OF THE URINARY TRACT

MOST RECENT ANTIBIOTIC AGENTS
G. Brownlee, Ph.D., D.Sc.

Published by

THE FELLOWSHIP OF POSTGRADUATE MEDICINE

60, Portland Place, London, W.1